关于扩展欧几里得.md
当$b = 0$时
$a$和$b$最大公因数为$a$
$a \times 1 + b \times 0 = gcd(a, b)$
若$b \ne 0$
假设已经通过扩展欧几里得获得
$b \times y + a \% b \times x = gcd(a, b)$
设 $a = qb + r$
$b \times y + r \times x = gcd(a, b)$
即$rx = gcd(a, b) - by$
要维护$a \times x + b \times y' = gcd(a, b)$这一循环不变量
要求 $qbx + rx + by' = gcd(a, b)$
$qbx + gcd(a, b) - by + by' = gcd(a, b)$
$qbx - by + by' = 0$
$by' = by - qbx$
$y' = y - qx$
$y' = y - (a / b)x$(这里是整数除法)
#Misc #Algorithm