invertibility_remains_in_number_multiplication.md

若$A$可逆,数$\lambda\ne0$,则$\lambda A$可逆,且$(\lambda A)^{-1}=\frac{1}{\lambda}A^{-1}$

证明

由$AA^{-1}=A^{-1}A=E$,便有

$$ (\lambda A)(\frac1\lambda A^{-1})=(\frac1\lambda A^{-1})(\lambda A)=E $$

故知$A$可逆,并且

$$ (\lambda A)^{-1}=\frac1\lambda A^{-1} $$