important_inference.md
对于$n$阶方阵$A$的行列式$|A|$,其任意一行(列)的所有元素与另一行(列)对应元素的代数余子式乘积之和等于零。即当$i\ne j$时,有
$$ \begin{align} a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots+a_{in}A_{jn}=0\\ a_{1i}A_{1j}+a_{2i}A_{2j}+\cdots+a_{ni}A_{nj}=0 \end{align} $$证明
将$|A|$按第$j$行展开,有
$$ \begin{vmatrix} a_{11} &a_{12} &\cdots &a_{1n}\\ \vdots &\vdots & &\vdots\\ a_{i1} &a_{i2} &\cdots &a_{in}\\ \vdots &\vdots & &\vdots\\ a_{j1} &a_{j2} &\cdots &a_{jn}\\ \vdots &\vdots & &\vdots\\ a_{n1} &a_{n2} &\cdots &a_{nn} \end{vmatrix}= a_{j1}A_{j1}+a_{j2}A_{j2}+\cdots+a_{jn}A_{jn} $$在上面等式的两端令$a_{jk}=a_{ik}(k=1,2,\cdots,n)$,可得
$$ \begin{vmatrix} a_{11} &a_{12} &\cdots &a_{1n}\\ \vdots &\vdots & &\vdots\\ a_{i1} &a_{i2} &\cdots &a_{in}\\ \vdots &\vdots & &\vdots\\ a_{i1} &a_{i2} &\cdots &a_{in}\\ \vdots &\vdots & &\vdots\\ a_{n1} &a_{n2} &\cdots &a_{nn} \end{vmatrix}= a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots+a_{in}A_{jn} $$当$i\ne j$时,上式左端行列式的第$i$行与第$j$行完全相同,故行列式为零,即
$$ a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots+a_{in}A_{jn}=0,\quad i\ne j $$类似可得有关列的结果
$$ a_{1i}A_{1j}+a_{2i}A_{2j}+\cdots+a_{ni}A_{nj}=0,\quad i\ne j $$综合这个推论和行列式按行(列)展开定理可得:
$$ \begin{align} a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots+a_{in}A_{jn}&= \begin{cases} |A|&当i=j\\ 0&当i\ne j \end{cases}\\ a_{1i}A_{1j}+a_{2i}A_{2j}+\cdots+a_{ni}A_{nj}&= \begin{cases} |A|&当i=j\\ 0&当i\ne j \end{cases} \end{align} $$或简单表示为
$$ \sum_{k=1}^{n}a_{ik}A_{jk}=\delta_{ij}|A|,\quad \sum_{k=1}^{n}a_{ki}A_{kj}=\delta_{ij}|A| $$