add.md

设$\lim_{n\to\infty}x_{n}=a$,$\lim_{n\to\infty}y_{n}=b$,则有

$$\lim_{n\to\infty}(x_{n}\pm y_{n})=\lim_{n\to\infty}x_{n}\pm\lim_{n\to\infty}y_{n}=ab$$

证明

$\forall\epsilon>0$,由$\lim_{n\to\infty}x_{n}=a$,对于$\frac{\epsilon}{2}>0$,存在正整数$N_{1}$,当$n>N_{1}$时,有

$$|x_{n}-a|<\frac{\epsilon}{2}$$

由$\lim_{n\to\infty}y_{n}=b$,对于$\frac{\epsilon}{2}>0$,存在正整数$N_{2}$,当$n>N_{2}$时,有

$$|y_{n}-b|<\frac{\epsilon}{2}$$

取$N=max\{N_{1},N_{2}\}$,则当$n>N$时,有

$$|x_{n}+y_{n}-(a+b)|\le|x_{n}-a|+|y_{n}-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

所以

$$\lim_{n\to\infty}(x_{n}+y_{n})=a+b$$