supremum_and_infimum.md

设$\mathbb E$是$\mathbb R$的非空子集,若存在常数$\alpha\in\mathbb R$(或$\beta\in\mathbb R$),满足条件

$$x_0<\alpha+\epsilon\quad(x_0>\beta-\epsilon)$$

则称$\alpha$(或$\beta$)为$\mathbb E$的下确界(或上确界

数集$\mathbb E$的下确界$\alpha$和上确界$\beta$分别记为

$$\alpha=inf\ \mathbb E,\quad\beta=sup\ \mathbb E$$